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L ABSTRACT

The raoid two-dimensicnal siswina and vibrational
control of the unsymmetrical flexibls 3COLE (Spacecraftt
Control Laboratory Experiment) with multi-bounded controls
has been considered. Pontryagin's Maximum Frinciple has
been applied to the nonlingar zquations of the system to
derive thé necessary conditions for the optimal control.

The resulting twc-point boundary-value problem i3 th

@

n
solved by using the quasilinearization technique, and the
near-minimum time is obtainsd by sequentially shortening the
512wing time until the controls ars nzar the bang-bang type.
The trade-off between the minimum time and the minimum
flaexible amplitude requirements has bsen discussed. Th=
numerical results zshow that the responsss of the nonlinear
system are sianiticantly different from those of the
linearized system for rapid slewing. Thz SCOLE station-
keaping closed-loop dynamics arsz ra~-axamined by zmploying a
s1ightly different method for developina the= =quaticns of
motion in which hiaghar ordesr tsrms in the zxpresszions for
the mast wmodal shape functions are now ynciudzd. If no
fores actuators irs mounted on tThe pzam, ths modal amplituds
Penponides ars mole fasily excited than when theze actuators

are includesd. Iystem 1"2SnoOnR3es 30 dzpzimiznt on both the

Ui

torce actuator locations 33 w1l as the obso: aind control
weighting matirix zizmsnts, A opraliminary snudy on the
effect of actuator wass oo The cloger- toon dvnamics of Tarde
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changes caused in ths mass and

for redesigning control laws previously svynthesized, -

-

accounting for actuator masses, is indicated.
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I. INTRODUCTION

The present grant, NSG-1414, Supplement 11, continues
the research sffort initiated in May 1877 and accomplished
in the previous grant ysars (May 13877 - May 1888) as
reported in Refs. 1-15% . This research has concentrated on

the control of the orisntation and the shape of very large,

w

inherently flsxible proposed future spacecratt system
Fossible future applications of such large spacscraft

ystems (L3S) includs: large scales multi-bzam antenna

w

communication systems; Earth observation and rescurce

sensing systems; orbitally based electronic mail

48

transmission; as platforms for orbital based telezscop
systems; and as in-orbit +test models d=s5ianad to compare the

systems with that predicted

(%3}

neirformance of flexible LG
based on computer simulations and/or scale model Earth-based
laboratory expariments. In recent years the grant research
has focused on the orbital model of the Spaczcraft Control
Laboratory Experiment (SCOLE) first proposed by Tavior and
exlakrishnan!B in 196€3.

sent report i3z divided into five chapters.

-

he pr

[}

Chapter II iz based on a paper presanted at thes 1983

AAS/AIAA Astrodynamics Conference and describes rapid two-

ce ited in this rsport ars Vistzd s=paratsly at
znd of =zach chaptar.
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dimensional slawina and vibration control of the
asymmetrical 3COLE configuration where the beam flexibility
is included in the model. Fontryagin's maximum principle
has been applisd tc the nonlinear equations of the system to
derive the necessary conditions for the optimal control
where the Shuttle mast, and reflector (multiple-bounded)
controls are considered. The resulting two-point boundary
value problem is then solved by uzing the guasiliinearization
technique, and the negar minimum time i3 obtained by
sequentially szhortening the slewing time until the controls

are nearly of the bang-bang type. The trade~-off batween the

[§4

minimum flexibl amplitude and minimum slewing time are
discussed.
In the next chaptzr (Chapter I1II) a sliahtly different

method for developing the eguations of motion tfor the SCCLE

santad involving a mors

b

system during stationkesping is pre

direct approach in matrix manipulation, and including higher

order terms in ths expressions foir ths mast modal shape
functions. flosed-loop responsess for the system modeled by

thiz approach arz compat=d with similar rssponses as

cresentsd in Ref. 14 (based on the Fh.D. theais of C.M.
Oiarra) for the same rang:s of ths state and control penalty
matrices. Further emphasis 13 placed con svaluating fow the
flaxible modes of thz 300LE mast ars zacibad during
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A preliminary study of the effect of actuator mass on
the design of control laws for large space systems iz the
subject of Chapter IV. A numerical example based on a

coupled two-mass two-s3pring system i3 seiected to illustrate

7]

the -effects of varying the masses and stiffnesses (one at a
time) on the closed-loop eigenvalues, and to determine what
changes should be incorporated into the control laws
previously dezigned, but nct accounting for actuator masses.
Finally, Chapter V dezcribes the main g=neral
conclusions together with general recommendations. At the
end of the grant yesar rzported here and atter submission of
our proposal for the 1989-90 grant year17, the thrust of
this research has besen redirected to provide more dirsct

support to the new MNAZA Controls/structursas Interaction

(C31I) program.
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II.

approaches to various structural models!
authors placed their efforts on different control strategies

The rapid two-dimensional slewing and vibra-
tional control of the unsymmetrical flexible
SCOLE (Spacecraft Control Laboratory Experi-
ment) with multi-bounded controls has been
considered. Pontryagin’s Maximum Principle
has been applied to the nonlinear equations
of the system to derive the necessary
conditions for the optimal control. The -
resulting two-point boundary-value problem
is then solved by using the quasilineariza-
tion technique, and the near-minimum time

is obtained by sequentially shortening the
slewing time until the controls are near

the bang-bang type. The trade-off between
the minimum time and the minimum flexible
amplitude requirements has been discussed.
The numerical results show that the
responses of the nonlinear system are
significantly different from those of the
linearized system for rapid slewing.

INTRODUCTI ON

The large-angle maneuvering and vibrational control
problem of a flexible spacecraft has been the subject of
considerable research by many authors through different

2.1
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while using rather simplified spacecraft dynamic models. A
few investigators have considered different and yet

complicated structural models®~® Among all the control
strategies used, Pontryagin’s Maximum Principle is an
important and a basic method to such a coupled nonlinear
dynamics and control problem. Although this method usually
produces open-loop control strategies, it has the advantage
of being able to handle control problems of more complicated
structures (nonlinear dynamics and control), and it may
prove to be useful in control-structure interaction
problems. Unfortunately, most of the applications of this
method to the slewing problem have been restricted to some
simplified model, for example, a central hub with two or
four symmetrically connected beams. Numerical problems
appear to have limited the extension of the techniques based

on the Maximum Principle to more complex system models®

However, by considering such extensions, we may
encounter many interesting phenomena and produce many useful
results. In this paper, we aim at using the Maximum
Principle for a slightly more complicated structural model,

namely, the 2-dimensional orbiting SCOLE® The complexity of
the present problem stems from three considerations: (1)
more nonlinear terms than before included in the dynamical
equations; (2) more control variables used in this system;
and (3) the rapid slewing or near-minimum time slewing which
may produce large flexible modal amplitudes. We hope,
through the present analysis, to reveal, to some extent, how
the nonlinear system is different from the linearized
system, and how some parameters, such as the slewing time,
and the weighting elements on the controls, affect the
responses of the system.

This paper consists of three parts: formulation of the
system equations by using Lagrange’s formula; derivation of
the optimal control problem which results in the two-point
boundary-value problem (TPBVP); and simulation of slews for
different boundary conditions and control variables.
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Fig. 1 Configuration of the Planar Orbiting SCOLE

FORMULATION OF THE STATE EQUATIONS

System Configuration

The Shuttle-beam-reflector system discussed in this
paper is shown in Fig. 1. The Shuttle and the reflector are
considered to be rigid bodies. The beam is assumed connected
to the Shuttle at its mass center, o_. In addition, the
reflector is attached to the beam at an offset point, a ,
which is X away from the mass center of the reflector, o
Both beam ends are considered to be fixed.

Fig. 1 shows the structure in the pitch plane, since
our present purpose is to analyze the planar motion of the
system. The equations of motion in this plane are also wvalid
for the motion in the roll plane, except for that case the
inertia parameters are different.

Three coordinate systems are used in Fig. 1: (ko,io),
the orbit’'s axes; (k_,i_), the Shuttle fixed coordinates;
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and (kr,ir), the reflector fixed coordinates. 8 is the
rotation angle of the Shuttle with respect to the orbit
coordinates. The transverse displacement of the beam from
its undeformed position is w(z,t), where z is the coordinate
along the k, axis, and t is time. If the displacement is
assumed to be small, then, an approxmate expression for the
rotation angle of the cross section of the beam is,

p(z,t)=0w(z,t)/dz.

The free vibration of this structure can be considered
as a free-free beam (Bernoulli-Euler type) vibration problem
with boundary conditions including the masses and moments of
inertia of the Shuttle and the reflector. The partial
differential equation for this problem can be solved by
using the separation of variable method, in which w(z,t) is
assumed as

w(z,t)= T v, (2)n, () (1)

(A

where wt(z) is the ith mode function (shape) and Ut(t) is
the associated amplitude of the ith mode. The natural
frequencies and mode shapes for the pitch and roll motions
are listed in Ref. 5, and will be used in this paper.

If the first n modes of the flexible system are used
in the formulatiom of the dynamical equations of the system,
the expression in Eg. (1) can be rewritten as

n
w(z,t)= ¢ wL(Z)UL(t)=wT(Z)O(t) (2)
v =t
where y'=[y ... w 1, =l ... n,1T. Then, we have,
1:0=dw/c? t=~LITr:1 (3)
'wl%(z)t)z(d1LIT/dZ)'0=‘“/ TD (4)
3tw/a2t =(d' T /dz! Jn=y" Ty (5)
SwJ=wT(ZJ ) ' (6)

8 and p are the generalized coordinates of the system.
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Kinetic Energy

The kinetic energy of the system, T, consists of three
parts, Ts, Tb, TP, representing the kinetic energy of the
Shuttle, the beam, and the reflector, respectively,

1T 4T, 4T (7)
where
=L1 g?
T =l1 g (8)
L . - ..
Tb=%J ol (w? +22 )87 +u? +2248 ]dz (9)
s}

TR ey e
T =1 (8+p )+ mr{(w +L7 )82 +2L3w_ +u’

r

—2xr(é+$r)[(Qr+Lé)sin¢r-éwrcos¢r]} (10)

where Is and Ir are the moments of inertia of the Shuttle
and the reflector with respect to the attatchment points,
respectively, m is the mass of the reflector, L is the

length of the beam, wr=w(L,t), and ¢r=w’(L,t).

Potential Energy

The elastic potential energy of the beam is

L 2
V=E—I-J (2%)? dz (11)
2 Jo 92t

where EI is the constant flexural rigidity of the cross
section of the beam.

Generalized Forces

The virtual work done by the controls is
4
8W=u168+ Zu *Sr. (12)
jea 9 ]
where u, is the control torgue on the Shuttle, and u, and w,
are the actuator force vectors on the beam, and u, is the

control force vector on the center of the reflector. The
8§89, and er are the associated virtual displacements.
From Fig. 1, we have,
=u + i -sin(e+
u uJ[cos(e ¢J)10 sin(s ¢J)k0]
rJ=(chose-szin8)ko+(zjsine+w'cose)io, 1=2,3,4.
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where u; is the magnitude of uj s z, is the location of u
along the k, axis; wJ=w(zJ,t); and ¢J=¢(zj,t). In this
paper, z2=L/3, 23=2L/3: and z4=L. After substituting these
expressions into Eg. (12), and noting the expression for &w

in Eq. (6), we can get,

sW=[u + z u;(z;cosp ; +u sing )188 + 2 BT (z;)u;coss ;8
j=1 jz2

=Q958+Q178U (13)
where Q8 and QD are the genéralized forces associated with 8§

and n, respectively.

Dynamical Equations

After substituting the expressions (2-5) into the
kinetic energy in Egs. (7-10) and the potential energy in
Eq. (11), and using the following maxtrix/vector notations,

rL L

pwtdz+m =U*[J owyTdz+m 4 (L)w(L)T In=n"M, 1
Jo

. . )
pw' dz+m v’ +1 0t =EnT (M +1 42 (L)y (L)T Ip=nTM 9
J0

L

Jo

L . . . . L
[ prdz+Ir¢+mr Loo_ =n7 [J pzwdz+Ir W’ (L)+mr Ly (L) I=p"
_ 0

J0

ED(Z%)? dz=y (J EIy"y"Tdz)n=nT Kn
3z 0

we can obtain the Lagrangian of the system,
L=%82[I+UTM20+2mrxr(wrcos¢r—Lsin¢r)]
+9[UTm2+mrxr(¢rwrcos¢r-wrsin¢r—L¢rsin¢r)]

+;—UTMGU-mr X b w sinrbr —;—UTKU (14)

L
where [=I_+I + pzzdz+th2 is the total moment of inertia of

o]
the undeformed system. The Lagrange equations,

d_ dL_ d 6Ly _dL—
— () -===
dt aé % dt a9  4n

of the system can be obtained in the following matrix form,
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5 ) .
M(n)[ . ]=F(8, n, n)*B(n)u (15)
n

with
I+n "M p+2m X (w cosd -Lsi ) s etry |
M(U)= K ZT) ror r d)r nﬁbr ymm ' Y (16)
m2+MlUcos¢>r—m551n¢P MQ-M551n¢r
_ -2897 (M, n+m cosp_-M psinp )+m 4 (Lcosp +w sing ) (17)
- ) ' o o . )
8 (qu+macos¢r Mosing )+(p M 28M )n cosp -Kp
B= 1 zzcos¢2-wzsin¢2 zacosqao-wosinr,b0 zacos¢c-wdsin¢‘
0 w(z,)cosp, (2, )cosy, ¥(z, Jcoss,

(18)
where u=[ul u u, u‘]T is the control vector. Other
notations used in these equations are

M‘ =m X w (L)yT (L), Ms =M1 +MI . Ma =M1 -M;r;
M =m x v (L)w 7 (L);
ms=mrxr[w(L)+Lw/(L)], qumrX,[W(L)‘LW’(L)]
We need the following linearized version of Egs. (15)
to compare the responses of the two systems.
I i m 0 i o 1 z z L
- |__ - l_:_ +|-=--- [ A S, u (19)
m o M 9 P K (] |9 w(z,) w(z,) (L)
For convience, by introducing the notations
yi=le, »"1=ly,,» -, y,], k=n+l, vy =y, y'=ly, v]]
Egs. (15) can be rewritten in the state form
Y, <Y,
}oo@o

Yy, =M ' (n)[E(y, v,)+B(n)ul
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DERI VATION OF THE OPTIMAL CONTROL PROBLEM

Objective

The purpose of this paper is to find the optimal
controls which rapidly drive the system from an initial
state, y(t=0), to a final required state, y(t=tf). Since the
magnitudes of these controls are, in pratice, bounded, the
optimal controls for the minimum time slewing problem are
usually of the bang-bang type. However, this kind of control
will generally introduce large flexible amplitudes.
Therefore, a near-minimum-time slew is of primary interest
to us.

Necessary Conditions

Instead of starting from the minimum time control
problem, we set out to deal with the optimal control problem
with a quadratic cost function,

. t
_1{"t ;T T T
=2 (579, v, +¥]Q v, T RWAE (21)

where Ql, Qz, and R are weighting matrices, tr is the given
slewing time. This kind of problem has been considered by a
list of authors. However, in their analysis, tr is fixed and
there is no limitation on the magnitude of the controls. On
the contrary, in the present problem, the slewing time t, is
no longer fixed, because we want to find a rapid slew or a
near-minimum-time slew. The magnitudes of the controls, u,
are also bounded,

o, <y, s i=1,2,3,4. (22)

Our strategies to solve this problem are described in
the following. First, the necessary conditions based on Egs.
(20-21) are derived. Then, the costraints, Eq. (22), are
imposed on these necessary conditions to modify the
controls. Finally, in the solution process of the resulting
TPBVP, the slewing time 1is shortened sequentially, in order
to find the near-minimum-time slewing. As we have discussed
in Ref. 6, when the slewing time is shortened, the optimal
control, will approach the optimal control of the minimum
time slewing problem, that is, becoming the bang-bang type.
It is clear that, when the controls approaCh the bang-bang
type, the value of the ijndex ;s in Eqg. (21) will increase and
approach its maximum value.
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The Hamiltonian of the system is,
P T T T T m—1
H—E(y‘Qlyi+y2Q2y2+u Ru)+x 'y +» M (F+Bu) (23)

where N and A, are the costate vectors associated with Y,
and Y, respectively. By using the Maximum Principle, the
necessary conditions for the unresticted optimal control
problem are the dynamical equations (20) plus the following
differential equations for the costates,

. T - !
n =28 =gy 2Er iy~ (pepu) -l 2B sy (24)
g

i
ayi ayi ayl i
. T
x2=_i§ =_szz-xi_i§ Mt (25)
ay, 3y,
where <xTaM-1>=[6M-& gﬂl& %M;; ]T represents a
2ay! ayllz’ yllz’ 7 ylklz
special matrix (similar for <x:M"§g >); as well as the
1
expressions for the optimal control,
g%:o, u=-R"!'BTM ' (26)

The control rules in Eq. (26) are then modified by the

following expressions’

-u if u o <-uo where
u = u if fu _J<u uLc=-(R"BTM"‘x2)L, (27)
u o, if u;c> u i=1,2,3,4.

By substituting the control expressions into the dynamical
equations (20) and the costate equations (24), we can

obtain a set of 4(n+l) differential equations for the states
and the costates. To obtain the control, u, we need to solve
this set of differential equations with the 4(n+l) given
boundary conditions: y(t=0) and y(t=tr). This problem is
called TPBVP because the B.C. s are specified at the two
ends of the slewing period.

Solution of the TPBVP

The quasilinearization algorithm and the method of

particular solutions are used to solve this nonlinear TPBVP®
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NUMERI CAL RESULTS

Some common parameters of the SCOLE used in this paper
are,

EI=4x10" 1lb-ft?, p»=0.09554 slug/ft, L=130 ft,
m =6366.46 slug, mr=12.42 slug,

5
u . =10,000 ft-1b, u  =u , =10 lb, u, , =800 lb.
1 b 2 3b ab

b

Other different structural parameters are listed in Table 1.

Table 1
STRUCTURAL PARAMETERS OF THE 2-D SCOLE
Roll-Axis Pitch-Axis
Is 905, 443 6,789,100 slug-£ft?
Ir 18,000 9,336 slug-£ft?
X 32.5 18.75 ft
w, 0.319954 0.295016 hz
W, 1.287843 1.645292 hz
W, 4.800117 4.974182 hz

All the numerical tests done in this paper are
rest-to-rest slews, that is. they use the same boundary
coditions for the states: n (t=0)=0, g(t=tf)=0; A (t=0)=0, and

8(t=tf)=8*, where B* is the required slewing angle, ranging
from 20 deg to 180 deg. All these slewings can be divided
into the following 3 groups.

Group 1
In this group, only the Shuttle control torque has been
used, i.e., u=u . The weighting matrices Q1=Q2=g and the

weighting on u , rt=10'5, Figs. 2 show the near-minimum-time
slewing about the roll axis, through 90 deg (Fig. Z2A). The
near-minimum-time, tf, has been calculated to be 27.8 sec.
The control torque is near the bang-bang type (Fig. 2F). The
maximum amplitude of the first mode of the linearized system
is 9.2 ft (Fig. 2B), which is less than 10% of the total
length of the beam. The first modal amplitude response of
the nonlinear system has a shape similar to that for the
linearized system, but with a shifting of the amplitude. The
second mode and the third mode of the nonlinear system have
quite different time histories from their linearized



counterparts (Figs. 2C-D). The rotation angle, b and the
displacement, w_ at the reflector end of the beam are also
plotted in Figs. 2A and 2E. They have shapes similar to the
amplitude of mode 1, because the first mode dominates the
deformation of the beam for this slew.

The slewing about the pitch axis has responses similar
to those about the roll axis. To make a comparison, the
results of many other slewings in this group are listed in
Table 2. o _ is the maximum value of the first modal
amplitude of the linearized system. Note that the number of
vibrational cycles of the first mode increases as the slew

*
angle, 8 , increases.

Table 2
RESULTS OF GROUP 1
Roll Axis Pitch Axis
E
8 (degq) t, (s) D ey (£E) t, (s) D, max (EE)

20 15.99 7.5 31.85 2.8°
45 20.56 9.5° 48.29 2.8"
90 27.80 9.2¢ 67.05 2.8°

180 40.14 9.5 95.23 2.8

“One cycle. b Two cycles with one big peak and one small

peak. “Two cycles with two equal peaks. iThree cycles with
two big equal peaks and one small peak.

Group 2
In this group, the force on the reflector, u, is added
to the system. The weighting on the states, Q1 and Qz, are

still chosen to be zero, and rl=10'5. The effect on the
slewing responses of adding the control force u, may be
analyzed by changing the values of tr and/or r, the
weighting on u, . Since the first modal amplitude dominates
the deflection of the beam, our main concern will
concentrate on the variation of the first modal amplitude.

To illustrate the effect of the parameters, t, and r,
on the time response of the first modal amplitude, let’s

2.11



consider a special case without lose of generality, i.e.,
the 90 deg slewing about the roll axis, the same case
plotted in Figs. 2 but with the control u, added. In Fig.
2B, the time response of the first modal amplitude can be
approximately expressed as -gxqusin(Znt/tr)_ This response

is 180'out-of phase with the control u, (Fig. 2F), because
of the inertia effect of the flexible beam. However, when u,
is added to the system, the torgque produced by u, will
accelerate the slew and balance the deflection of the beam
produced by u .

It is not hard to imagine, from the physical point of
view, that when u, increases to a large value, the response
of the first modal amplitude may be in-phase with u, (or
u‘), i.e., Ul(t)”vlmaxSin(Zﬂt/tf)- Therefore, between the
small values and the large values of u, there must exist a
critical value at which the phase of the first modal
response changes from out-of-phase to in-phase. It is also
expected that during the "phase-change" period, the maximum
value of the first amplitude becomes a minimum. This
conjecture, fortunatly, has been proved to be true in our
calculations.

One way to change the value of u, is to change the
value of r,, for fixed slewing time tf. Another is to change
tf while mantaining r, fixed. These results are plotted in
Figs. 3A-3B. We should point out that for large values of r,
(Fig. 3A) or large values of tf (Fig. 3B), u, is small and
the response of the first modal amplitude is out-of-phase.
On the contrary, small r, or tr results in large u, and,
therefore, in-phase response. In each of these cases, a
minimum value of n exists. It is also interesting to
know that, at these critical values of r, or tf, n(t)
experiences two oscillation cycles with two egqual peak
values (or valley values) of the linearized system, i.e.,
D(t)ﬁnlquSin(4ﬂt/tr). The dotted lines in Figs. 3A-B
represent the nonlinear system responses. The nonlinear
response has a shift from the linear response, especially
when tf or r, is reduced. Also, we have observed that, at
the critical points, although the amplitudes are small in
value, the linear and the nonlinear systems have quite
different time response histories.
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A complete relationship between the three parameters,
Dy max? tr’ and r, can be investigated through the
3-dimensional surface in Fig. 4. The lower ditch on this
surface represents the minimum value area of Dy max - Although
the global minimum value of D) mayx COCCULS when tf is quite
large, there exists a local minimum value, U!max=0'41 ft,
around the middle of the ditch, where tf=23.881 sec and
r‘=0.86. This important point can be chosen as the trade-off
point between rapid slew and small amplitude requirements,
at which neither t, nor D, max 1S too large. The response
shapes of the first modal amplitude for the different wvalues
of tr and r, are different. In the hilltop areas, only one
vibrational cycle of gl(t) exists, but along the deep
valleys of the ditch, Ux(t) has two vibrational cycles with
two equal peaks. More surprisingly, at the local minimum
point mentioned above, 01(t) experiences three vibrational
cycles with three equal peaks. The responses for this case
are shown in Figs. 5, where the linear and nonlinear systems
are quite different in spite of the small hmodal amplitudes.

Group 3

Based on the example shown in Figs. 5, the controls, u,
and u are added to the control system in this group. The
associated weightings on these controls are r2=10'0 and
r,=20.0. Also, the weightings on n, and n, are selected as
200.0 and 1000.0, respectively, to show the further
reduction of the modal amplitudes. These results are plotted
in Figs. 6. Compared with the results in Figs. 5, the modal
amplitudes have been slightly reduced and the maximum value
of u, has been reduced due to the addition of u, and u, -
Note that u, is not shown in Figs. 6 because of its
similarity to that in Figs. 5.

CONCLUSION

The Maximum Principle has been applied to the rapid
slewing problem of the planar flexible orbiting SCOLE. The
dynamical equations used contain more nonlinear terms than
those used by other authors, and the responses indicate the
large differences between the nonlinear and the linearized
systems, not only in the rapid slews where large modal
amplitudes are involved, but also in the small-amplitude
slews. The analysis between the relationship of the
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‘parameters, Dy max’ tr’ and r, indicates that the conflict
between the rapid slew and the small flexible amplitude
requirements may be compromised for multi-input control
systems. The effects of these parameters on the
3-dimensional SCOLE model slewing responses need to be
investigated.
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III. CONTROL OF THE ORBITING SCOLE WITH THE FIRST FOUR MODES

A. Formulation

In order to complete the calculation of the elements of the state and control influence matrices
for the orbiting SCOLE system linearized about the nominal station keeping motion, we list all
equations of the system which are based on the formulation of Ref[1] as follows:

1. Generic Modal Equations of the Beam

A 2 1 . 1 o 2 1 .
An+wnAn B TGI(Bn)T'2+TG2( ’3[1)”]]*’? (')()G?s( Bn)T]Z
_2_"’06(8)' +iw2(3(3) -3 w2G. (B m,=F (1)
L 20 By /3 L 0 Y2\ By )My L 0 y M =

where
Ay (n=1,2,3,4) is a time dependent amplitude of thc nth mode.

ni (i=1,2,3) are angular displacements about roll, pitch and yaw axes.
Gl( Bn) = f3( Bn )A1n+f4( Bn )B 1n + f5( Bn )C In + fﬁ(‘ Bn »)Dln
Go(B,) = [0B A +T(B B +1s( B ICy, +10B,)D,,
G;(B,) = [y 5;1 IA 3, + 14 9;1 )B 5,
ﬂn_(i}gL) . Leos ( B,D

(B = -t
B n BI)
(B ) = cos ( SHL) N Lsin ( 1) ~ l:
Bs B, B
fs( B )= - Lcosh (Bn_L) N sinh; B.L
Bn B n
(B ) = Lsinh( B L) _ cosh ( B,L) N !
B, B2 B2
F = FX [ V3x an(—L)+ \éx an (=2L/3)+ le an (—L./3) |

FF [ V3§ CL+ Vo S (F2L/3)+ V| S| (=173



S Z)= A, sin( BZ) +B , cos ( BZ) +C sinh( B7) +D cosh ( B.Z)

ol

S yn( Z) = A, sin(BZ) +B, cos (BZ) +C, sinh( B7) + D, cosh ( BZ)

6 _(Z)= Ay sin( B,Z) +By, cos (BZ)

2. System Equations without Flexibility and External Forces

T]llxx—nzlxy —1']31,(2—030113( Ixx_[yy+l7z ORI

—dwgn (I, ~Ty) —egnyl, —Fogmngly, =0 (2)

nzlyy +nllxy + n3lyz— ooOT]]lyz+wowq3Ix\V = Jwogm ]I‘(.V

2 2 —
+w0n3lyz +3w()n2([‘<x_‘77)") (3)

M3l =Ml —n2lyz + won Ixx—lyy+172 ) "‘00“2'w

—win (1l =1,) =0 (4)

2 2
—40\)01111)(2 +3wgm,yl vy

y7
where
_ MI? 2 w2
IXX = IS] +'R1+_—3 +MR(L +Y“)

_ MI2 )
Ty = 152+IR2+T + M2 +X?)

I, = u3+IRy»M%X2+Y2)
[y = MpXY

I, = I, +MXL

[, = MgYL
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3. System Equations with the First Four Flexible Modes

Nl - n2]xy -M3l, - e 3(» Tex ™ Iyy + 1) —agn ?I\-y

2 N 2
_4('00“1([22* Iyy) wonyl, - Jognol,
+ nElAndln —nEIAndZH +n_z__"'\n d 3n *

. e ‘e . . 2
n2lyy +m IIxy M 3Iyz - 'ﬂleIyz ™ 3w01xy — 3o nll‘u

4 ..
2 2
+m0n3lyz + 30‘)01‘]2( lxx - [zz) + nE]Alw d 4n

n

Nal, =Ml — 7 ZIyz + ﬂlw()( Lex ~ Iyy + L) —agmol,

2 2 a2
— dag M, + 3wy L, —wgms( - Ty :
+ nE]A“ dgn * nE]A” doy ”i::l‘ o @an

where

% vy U Ixy, Iyz , IXZ are same as in 2.

T, = MU, + F LIV, 7/ 3+2V, /3 + V|
T, = MU, + F LV / 342V, /3 + V|
T = MU, + XF V. -YF Vy

B. System State Equations

In this section we recast all system equations (1-7) into matrix form.

Let

X=[nm 1M AAA A o A A AN
1 2 3 1 2 3 4 1 2 3 1 3

rJ
—

as a state vector and

3.3

4 .
El An dSn =T

(5)

(6)

(7)



\Y

Y%, U, U

|
3y X yL

U=[V1x Vly \éx \éy

as a control input. We then set up the system state equations bv (wo different
state matrix and influence matrix, respectively.

-

1. Method of Ref[1]

Generic modal equations of the beam:

%ﬁ.l Al ﬁ] hl n] x};
A, [D]Az []n . [ . V2x
L et o | -
A4 A4 M3 AL _n3~ V3yr

-ﬁl- n, W
)| +[ed| ™ | +[E ] =
ﬁ3 ﬁ3 n,

System equations with the first four flexible modes:

- - — - — - . - - -

Tl] Al Tll Al T]l
. A . A2
el |+[E]] | +Edm [+E] | +ES™
.. A3 . A3
n A n
i 3-‘ _A4_ -n3— _A4_ i 34
A Vix U
1 Viy X
A2 V2x
+[E a | = D vay +[M,] U,
3 V3x
A4 V3y U,

-1
We then recasi eq(9) by inverting the matrix [El] .
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M T‘]1 U
. -1 : -1
M| = -[g, Es] || - [g EJ|m, (11)
n, n, n,
. - - -

A ; W[
) , ) . , V2
ALl ~[p] A -[D; - D, E, 153] M2 |-[p, - P, F, 185] "+ [F] vz;( (12)
; 3 _ V3x
Aq =3 ] _nB_J Al
or briefly
A=[c]a+c]n+lc]n+[F]v )

where

[c)]=-[p,-D,E] EJ]
cl=-[D,-D,E, EJ
Then eq(13) without the external forces is substituted into eq(10) with the result

[cda+[c]n+[c cln+lc)a+ o v Ju (14)

where
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b

1}
_.>

>
[

3>
(98]

3>
F-N
5

[cd=-[e,(E5 +E, C ;)

kﬂ="h;%E6+E2C1ﬂ

M= [E™,]

] = [e7m, ] \
Eqs(14) and (13) may be combined as follows:

a| c, Cs||s . Cs Col|n . M, Ml v .

A c, O0]lLA C, CiflA Foooo Ly

The system state equation becomes

x =[a]x +[8]U

where
[0 0 1 0o ] 0 o ]
0 0 0 [ 0 0
[A] = B ST TTITS FTE and [B] =1 ...
6. Cs 4. Cs MoooM
| 3. Cl 2 0 D )

2. Direct Method

The generic modal cquation (eq(8)) and system cquation feq! 10)) may be directly combined
to yield:
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D,

e

-

!

A

or briefly

[

E, E,

D,

I

-1

Eq(16) may be rewritten, following the inversion of the

(16)
-D, D ]| A F 0 JLU
acceleration coefficient matrix, as
1-1

We can get the system state equation from eq(18), that is

x =[a]x +[B]U

where

n B By “Es Eglln
+
-1
M, M|V
(17)
F o ||u
. \/
+[B ] (18)
108
(19)
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0. Numerical Results
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method. The torquss nessded about the other two axes are

the maximum torquss ot the system ars 6,528 ft-1b for the

method of Rzt. [ 1] and 5,802 tt-1b in the dirsct method.

E. Concluzions

U3
6]
—t
t—f
o
b
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the direct method, 1t 13
to zach other.

2. In the r=sponses resulting from the direct method for
the same initial displacemant about the roll axis, it i3
szan that the Tirst four flaxibles modes ars generallvr

sxcited more than for the results of the method of Ref. [1].

3. If no forca actiators are addsd to ths bsam and

reflector complste damping of the moda! responsez reguires 3

much longer time (Fig. 8) than wh2n thz force actuators are

T
b
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m
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et
=
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=

utilized together with the Shuttliese torguers (
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1
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should be zelesctesd 3¢ tThat he zvstem control Decomes

3. Erem the sy3tem analyvsi s, we riagd ths riagibility of the
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keeping operations. Syst
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(0]

3
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m r2a3ponse:

%

and thes total torqus

33}

ulses needed are zimilar to the riaidized SCCOLE system
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1.

G. APPENDIX

1t 12

42

Q.

81l B2

=
]

yz

d31

wp ( Ixx-

Format of Submatrices

xy xz
vy ye

Izy 22

o)
o R

13 14

.
(o))

43 44

Q.
Q.

63 64

Iyy+Izz)

21 22 23 24

b 71 72 73 T4
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~wg (I =TI +1

yy*1lzz)

wnIxy




w? 0 0 0
0 w? 0 0
0 0 wd 0}
0 0 0 w$

G,(8,)/L -G,(s,)/L
G,(8,)/L -G, (s,)/L
G,(8,)/L  -G,(s,)/L
G,(s8,)/L -G,(s,)/L

O O OO0

2wyG, (8, ) /L -2wyG,(8,)/L =
2wyG,y(8, ) /L ~2w4G,(8,) /L
ZwDGa(ea' )/L -2wyG,(8,) /L
200G, (8, )/L  -2weG,(8,)/L |

o O O O

T~ 4wiG,(8,)/L  -3wiG, (s, )/L 0]
4wiG,(8,) /L -3wiG, (8,)/L 0
4wiG, (8,)/L -3wiG, (8,) /L

4w3G,(8,)/L  -3w3G, (s,)/L 0

— F. S, (-L/3) F S, (-L/3) F.S_ (-2L/3)
! y oy, xoxy

F.S. (-L/3) F.S. (-L/3) F.S_ (-2L/3)

X" Xq Yy, x X

FyeSg, (-L/3) FySy, (-L/3) F Sy, (-2L/3)
i F S, (-L/3) EySy (-L/3) F, Sy, (-2L/3)
EyS, (-2L/3) FeSe, (L) EyS, (<L) N
EyS, (-2L/3) F, Sy, (<L) EyS, (-L)
E,S, (-2L/3) F Sy, (-L) EySy (L)
EyS, (-2L/3) FySg, (1) E,S,, (71 |

3.24



2.

o) F,L/3 0 F,2L/3 0

m=| -FL/3 O -F2L/3 O -F,L
0 0 0 0 -YF,
M 0 0
0 0

System Flexible Mode Shapes
(1) Method of Ref.[1l] Equation (For nth mode)

Chn=MR[-LSny(—L)—XYen(-L)]+Mf2(3n)/L
d?nzmnwO[stx(-L)]
d3n=w§[Mf2(Bn)/L—MRXsn(-L)]

gy =ME, (8,) /L[ Iy +Mg (X2+L2) Jo (-L)-MeLS,, (L)

dy =w M X[Le,(-L)+2S  (-L)]
g =M, [ XS, (-L)-¥S_ (-L)]
d =M w,XYe (-L)

dsn=w%stx(—L)

3.25
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(2) Direct Method s Equation (For nth mode)

d,,=Mf, (8, ) /L+M LS, (-L) +MXLe, (-L)+M Y25 (-L)
-MXYS’ | (~L)+Ip S7 (-L)

d2n=szMRYSnx (-L)+( —ZwOM%RYz—wO IRI +awgy IRz-wOMRXZ—wU IRa Yo, (-L)

dy, =« [M£, (8, ) /L+MXYS" (-L)-M¥2S"  (-L)
+MELS, (-L)+Ip S° ) -Ip S° (-1)]

4y =ME, (8,) /L-MLS  (-L) +Io S’ (-L)+M¥Le,(-L)
TMXYS” (L) XS (<L)

dgp=-MpugXS,, (-L) +MgwYLS ' | (-L)-MywoXLS | (-L) +MgwoXYe, ( -L)

d6n=MRxsny(_L)'MRYSnx('L)+MﬁXY°n('L)+M§Y2°n('L)+IR3°n('L)

(-L)+wyI, S°__(-L)

d7n=MRw0YZS'ny(-L)+MRwOXYS‘nx(—L)—wUIRZS’ R3S ny

ny
M XLwge, (-L)+woTy S (-L)

dgn=MywdYS, , (~L) +MewXS,  (-L)-wdl, o, (-L)+w3l, e (-L)

3.26



where

Lcosa L 51na L L31na L cosa L
£,(8,)=A ( ] [ +1

Bn BZ BZ

N 31nha L Lcoshs L L31nha L coshs L WA

Lcose L 51na L L31ns L cosp L 1
e S Yo (2 )

Bn BZ 52

51nha L Lcoshs L L31nha L cosha L 5
e SR ) [ T )

S’nx(—L)=Bn[A‘ncosanL+BlnsinsnL+ClncoshanL+D1nsinthL]

S ny(—L)=Bn[A.chosanL+B2nsinanL+C!2ncoshB“L+D2nsinthL]

3. System Parameters

(1) Inertial Moment

I’1=905’443 slug-£t2
Isz=6,789, 100 slug-ft?
Ia=7 086,601 slug-ft?
Ig —145 393 slug-ft?
Ip -4 969 slug-ft?
IR;—4,969 slug-ft?
IR3=9,938 slug-ft?

3.27



(2) First Four Modal Coefficients

;ZZe No. (n) 1 2 3 4

_____ 5;_—-—-——fiﬂ5--_—_jf?ii—-__-if1§f-—-_—251§§—___---
----- ;::-__——15Yiif--_—15}ii5--_-]§]i%f-___752ﬂ§5--___-
----- o To0.27a  0.322  o0.748  1.24
----- R;:_-_-—-?§7ﬂ§f--—_?§?§ﬁ{___-EJQiﬁf___—Qf?iif——_-_
————— é;:-————iifﬁﬁig-——iif]iii--_iQJQii;—--iifliif—_-_-
----- E;:__—--ilf7ﬁ§§———iif]§ﬁ§-__tlf}ii;__-il;?iii-——--
----- 5;:__--——?f?ﬁi§__-—?f?i;f--_-lf?ii;_--_?f?ii;--_-_
----- R;:_---_iif]ii;__-_?f?ﬂi;-—__Qf}iﬁ;—__ilfiﬁi;_——-_
_____ Q;:—_—-—-?f}ii;-_—ilf?ﬁig———-?f?ii;———-]f?iii-____
————— E;:—_—_-—?f]ii§-—_ilJ?ﬂ§f—_-il§]ii;__—_?f?ﬂif—___—
----- 5;:_---—ilf}i%;—_—-?fﬁﬂig-—_iif?ii;___ii§1ii§_—--_
----- R;:——--_ilf?iﬁf___—?f?iif—-—-}f?ﬁﬁf——-‘?;?iﬁf--_-—
e, 0.158E-4 -0.109E-5 -0.131E-4 -0.123E-5

(3) Other Values

wg=7.27E-5 rad/sec
M=12.42 slug
MR=12.42 slug
X=18.75 ft
=-32.5 ft
L=-130 ft

3.28
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IV. control Structurs Interaction - Preliminary 3tudy of the
Effect of Actuator Mass ON +the Des3149n

of Control Laws

The dynamics of large space structures are described

using the finite slement method astt
M X + CX + KX = BV (1)

what e
X = nxt vector repraszznting dzgress of freedom
M = nxn mass matrix
¢ = nxn damping matrix
K = nxn 3tiffness matrix
B = nxm control influence matrix

o= mx] control vactor

Using modal analysis? and modern control theory3, stats

variable feedback control laws of th= form
.
U= -Fp X - FpX (2)

whers

T
—
=
O
[$4]
]

Fro @nd Fp 3pe rate and position control g3ain ma

o
3]

of appropriats dimensions are d=sianed. To implamant t

control law aiven by squation (2) physical actuators

i
it}
b

. mass and,

11

ne=dad. These phvsical sctuators have Tinit

il

thus, changs the mass =nd stiffness of the structurs to be
contrellsd. This mass can b= a=s much as fift==2n p=rcent of
+he uncontroll=d *3tr‘uctn.n‘e.!4 Thus the control laws desiansd
without taking this mass into conzidsration navs to b=
resvaluatad toi thair stability and psrformance dearadsatio

AssumingaM and AKX in the mass and stiffn2ss

i
=
1Y)
-+
=
I
O
=
gt
>

i
1Y
153



—+

dus t

3
p—

r1c

Z

8

O C

4]

=

ystem can bes writ

[

(M+AM) X + (C
the control

controllasd syst

18

m,

matrice

3.

are alzo positive defini

though performance

assumption that AM

azsumption, as the
structure with Lhe

based on ths=

Ixt)

zchniques, and th

definite. A3

(M
AM), {K+8Fp) ar

al

1

AK+BFp) ar

positive definite

definits, AM and A

the actuator mass

zpred harz,

consid

]

In thi

1]

oV

in

n:

into account znd.

Tw

]

tTwO mMass;

+

matrix,AM

finit=s

+OM)

o=rtormancs2

N,

+tha dynamics of the controllead

tan a

- e
Do

FBFL) X + (K + BK*BFy) X = 0 (3)

law i5 designed for th= stability of ths=
the matrices M, C+BFp, and K ares positive

5 If the changss in the mass matrix and
and AK, are also assumsd to be positive

matrices {(M+AM) (CHBF L), and (K+JAK+BFp)

te. Thus, =quation (3) i3 stable,

degqradation tan not be commaent=d on The
and AK are positive i35 & valid

dypamics of the ozcillatory motion of the
added actuator masses can De deszcribed

sl=ment method or =nergy

us, (M+AM) and (K+AK)Y must

{ K +BK)

Thus,

and (M+AM) and (K+okK)

K are positiv

on the ztructural damping

i

151

the modal truncation

i3

1

thus, the control zpill-ovar problsm will

; degradation analysed using 3

sy3t

14

two actuator

4.2



The tWO*mass two SPring SYSten 13 Shown n Figure I ang
its equations f Motion gp. Written EER
my 0 X k;*k') - f(__ X 4 o U
o |+ , 1 :
O m, X2 2k 21 [0 U, (4)

The cqqr“ [




Numerical Example:

The two-mass two-spring system i3 shown in Figure 1 and
its esquationsz of motion arse written as:
.t
m 0 X k1+k2 - k2 X4 ] 0 U
ot + =
0 mo X5 ‘|(2 k') X2 0 | Us (Lt)
The control law of ths form
" . L
Uy Ty T2 X1
::- - - *
u2 tay  Taz X2 (%)
iz designed with the following numerical valuss tor ths
mass. stiffness and control gain matric=s.
mq = 2, mp = b, ki o= &y ko =1
fog = b, Ty = foyp = 0, f20 = |
Th= numsrical simulation iz conducted varvina the masses and
stiffnasses, ons at a tims, and ths closzsd-loce zigsnvalues
are tabulatsd in Tabie 1. From Tabls 1, it can bz observed
that tn= change in mass, mo. A33 3 maximum affect on ths
deqradation of ths closed-loop =2iasnvaluss A 18% changs 10
mo sushed the letomost gigenvalusz to the riaht by arcund 11%
while the z=cond = g=nvaluz movsd To the right by around
2% s 182 chanoas 1y my movsd the eiusnvalus oloiest T tha
TR to the vayaht by 55, Thus, Lhis 2impie
axaAmE 2 anc aumerical simulation damonztratzz that the

4.3
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T
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sctuator maszses atfect the performance of the control law
that 15 designed without taking thess masses into
consideration, 1+ i35 also worthwnilz to oshserve that a

h iqznvaluzs to the riaht

'ty
1Y
—

O
o>
ut
po)
i3
11
—
o
T
o
[ty
Ut
l—+
-y
—f
-+
o
[¢1]
L1
[]
3
O
<
({
U3
-+

effzct of

il
M

a3z well as to the left and can be =xplained as th
the increase in the stiffness on on= mass or th< other.
To understand the performancs dearadation dus to
actuators an z2xhaustive simulation of thz closed-Tcop
controlizsd zvstem has to be dons with the tollowing

~onsiderations:

The masses nasded to implzment spzciric control

torces have to bs =svaluated.

N
—
o
41
[§]
=
e
3
(tH
—
)
01
+
-+,
-+
-
O
Ul
Us
[o
fonl
1y
fad
O
O
=
£l
o
[P
b
=
>
=
[¥]]
U3
193]

3. Simulation has to b2 conductzd with changes in fthz
total mass and stittneszs matrices rather than

dons in this studs.

03

individuzl mazsss as |
A contrei syvstem desian to sccommodats bhe =fTect of

to b= dons in Tteratiye fazhion

97}
i
ity
37}
-
st}
L

Fhe actuator ma:

incorporating the ohangs in mass and =tiffpness into the

~—+;

sontiroal baw 13 arrivead

-
e
T
~t
o)

dynamic mod=zl until . 3t 13

Retrapranczs
1. RS AR AT DT The finite Crement metiod o« MoGraws
AP T Booh Company Loc. .o Rew Yo T A
- Har o Pl aEnanald cosddoda il s e LR AT LN AL AL
Y B ; flaws % ! ;

ORIGH 2 ©h]
OF POGR ConniiTY
4.4



Lod

(93]

nd

[y}

ivan, R.. Llbhsal optimald sontrel

[

Kwakernaak, J.

syztems., John Wirsy & Sons. New vork., 13870.
carth Pointing 3atzllite (EF3) stpucturs Cescription,
NAZA Internal Document, Jfan.. 18€9.

gzl 1man, R., Introduction. te Matrix Apnalysis. McGraw

Hill Book Companv Inc., New York, 1960.

4.5



k k
g 1 2
/] m
/-—-W_, ml —W—-— 2
A
AV AV AV A AN S A VA A A A AR S A e

Figure 1: Two Mass-Two Spring System
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Percentage change in
masses and stiffnesses

Closed loop eigenvalues
(complex conjugate pairs)

m; m, kl k2 1 2

0 0 0 0 -0.472 + j0.710 .277 + j0.163

15 0 0 0 -0.464 + 30.709 .254 + j0.154

0 15 0 0 -0.420 + 30.684 .268 + 30.163

0 0 15 0 -0.477 + 30.729 .272 + j0.171

0 0 0 15 -0.465 + j0.756 .284 + j0.168
Table 1 : Closed-loop Eigenvalues due to Changes in Mass

and Stiffness Values.
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v, CONCLUSIONS AND RECOMMENDATIONS

The maximum principle of Fontrvagin has been applied to
the rapid maneuvering problem of the planar, flexible
orbiting SCOLE. The resulting two-point boundary value
problem is solved by applying the gquasilinearization
technique, and the nsar-minimum t+time is obtained by
shortening the maneuvsring time in a sequential mannar until
the controls are near the bang-bang type. The results
indicate that responses of the nonlinszar system for the
flaxible modal amplitudes may be significantlyv different
from those of the corresponding linsgarizad system for rapid
slewing maneuvers. This research is currently bzing
axtended to the three dimensional slewing of the flexible

2C0LE system,

[t8

From an analysis and simulation of the 3COLE station-
keeping dynamics it 13 found that the flexible vibratiors of
the mast are not areatly excited during typical station-

"V"t

sponses are highly dependent

3

[t

m r

M

keeping operations.

L

on the force actuator locations and the numsrical values of

state and control penalty matrices included in the LGR

th

1

control law desian. Forcs actuators mounted at 1/3 and 2/3
of thes mast length along the mast ars et fective TN
suppr=ssing the flexible mast vibrations.,

A preliminary cxamination of the etfect of mctuator
mass on the desian of control laws for large flaxible apace

sy atsms demonstrates that actulator masssos ©an nflusence ths
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nerformance ot the closed-loop system whers ths control law
has been designed without taking these masses into
consideration. To understand better the possible degrada-

of actuator masses

i

tion in performance due to the preseanc
additional studies are required to accurately evaluate the
changes in the stiffness matrix due to specific actuator
masses, and simulations must be performed incorporating
changes in the total mass and stiffness matrices, rather
than individual massss as was done here.

Finally, the currsnt (1989-90) grant work has been
radirected so as to land greater support to th=z new
controls/Structures Interaction C8I) proaram and focusing
on specific ©3I evolutionary configurations, in addition to
tment of the SCOLE 3-D slewing problem.
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